首页  专利技术  电子通信装置的制造及其应用技术

发信装置的制作方法

2025-11-02 14:40:03 16次浏览
专利名称:发信装置的制作方法
技术领域
本发明涉及数字无线电通信的发信装置的非线性失真补偿技术。
背景技术
近年来,使用数字调制方式的移动通信系统的研究开发很盛行。为了谋求节省无线终端的耗电,发信系统的放大器使用高效率的放大器,于是容易发生非线性失真。因而有必要以某种方法对非线性失真进行补偿,作为一种手段存在着使用发信基本频带信号的振幅值,参照失真补偿表,进行振幅与相位的非线性失真补偿的方法。
下面对采用这样的方法进行非线性失真补偿的已有的发信装置加以说明。
图10表示已有的发信装置的主要方框图。在图10中,振幅计算部1001计算出发信信号(I及Q通道的发信数字正交基本频带信号)1009的振幅信息1010,补偿表1002输出失真补偿系统1011。失真补偿部1003根据发信信号1009和失真补偿系数1011输出失真补偿信号1012。该输出的补偿信号1012由正交调制部1004进行正交调制,该调制信号1013由放大器1005放大,以此输出放大的RF信号1014。
又,解调部1007将从耦合器反馈的RF反馈信号1016解调为基本频带信号1017,推定部1008根据失真补偿系数1018、发信信号1009及反馈基本频带信号1017更新补偿表1002的失真补偿系数。利用以上动作,耦合器1006输出进行过非线性失真补偿的RF放大信号1015。
此外,对发信系统的非线性失真进行补偿的方法,有具备附加ROM的数字式滤波器,预先以数字式滤波器提供用于补偿放大器产生的非线性失真的失真以进行补偿的方法。
使用这种方法的已有的发信装置的主要方框图示于图11,下面对其进行说明。
存图11中,输入数字信号1101的数字式滤波器1102使用预先存储于ROM的失真信息,将用于补偿高频功率放大器1105发生的非线性失真成份的失真给予数字信号1101。
被提供补偿用的失真的数字信号1101在经过正交调制部1103 D/A变换后受到调制,通过发信部1104输入高频功率放大器1105。在高频功率放大器1105,输入的数字信号得到预失真补偿,因此在高频功率放大器1105产生的失真被补偿用的失真所抵消。
又有使用用于存储补偿非线性成份的补偿系数的RAM,根据数字信号的振幅改变RAM的补偿系数以进行非线性补偿的方法。
又,在日本专利特开平4-290321号公报上也公开了将高频功率放大器的输出反馈到数字式滤波器,对数字式滤波器的动作进行控制的方法。
但是,在图10所示的已有例中,必须把具有最大振幅的信号抑制在放大器1005的最大输出以下,结果在放大器1005招致效率低下。
又,在图11所示的已有例中,需要用于存储补偿非线性成份用的补偿系数的ROM或RAM那样的存储表,整个发信电路变大了。

发明内容
本发明的目的在于提供容易控制泄漏电功率,容易实现功率放大效率的提高,不使用ROM或RAM等构成的存储表,而能够补偿发信系统的放大器产生的非线性失真的发信装置。
第1本发明是在具有非线性失真补偿电路的发信装置中附加振幅计算部、振幅限制表及振幅限制部,使其具有发信正交基本频带信号的振幅限制功能。以此可以限制整个系统的失真,而且可以轻易地提高放大手段的效率。
第2本发明是根据在补偿系统计算部用近似式计算的非线性失真补偿系数进行非线性失真补偿。以此可以不使用ROM或RAM等构成的存储表而对发信系统的放大器发生的非线性失真进行补偿,可以使非线性失真补偿手段小型化。
又,本发明具备计算发信正交基本频带信号的第1振幅值的第1振幅计算部、存储对应于上述第1振幅值的振幅限制信息的限幅表、用上述振幅限制信息对上述发信正交基本频带信号的振幅加以限制的第一限幅部、对限幅的发信正交基本频带信号进行正交调制,输出RF信号的正交调制部以及放大上述RF信号的放大部。
利用这种结构,对使发信正交基本频带信号失真,限制最大振幅的限制信号进行放大器的失真补偿,以此可以限制失真成份,而且使放大手段的效率得以提高。
又,本发明是具备由发信正交基本频带信号计算第1振幅值的第1振幅计算部、计算与所述第1振幅值对应的振幅限制系数的限制系数计算部、用上述振幅限制系数限制所述发信正交基本频带信号的振幅的第2振幅限制部、将受到限幅的发信正交基本频带信号正交调制,输出RF信号的正交调制部,以及放大上述RF信号的放大部的结构。
采用这种结构,根据发信正交基本频带信号的振幅信息计算振幅限制系数,根据该振幅限制系数对发信信号进行限幅,可以在不增加存储器的情况下限制失真成份并使放大器的效率得到提高。
又,本发明是具备计算发信正交基本频带信号的功率值的功率计算部、使用所述功率值根据预先设定的近似式计算非线性失真补偿系数的补偿系数计算部、使用所述非线性失真补偿系数对上述发信正交基本频带信号的非线性失真进行补偿的失真补偿部、对失真补偿过的发信正交基本频带信号进行正交调制的正交调制部,以及对上述正交调制信号进行放大的放大器的结构。
采用这种结构,可以用很少的存储容量对发信系统的放大器发生的非线性失真进行补偿。
又,本发明是具备计算发信正交基本频带信号的功率值的功率计算部、使用所述功率值根据预先设定的近似式计算振幅失真补偿系数的补偿系数计算部、对上述发信正交基本频带信号进行正交调制的正交调制部,以使用上述振幅失真补偿系数进行正交调制信号的振幅失真补偿的振幅失真补偿部的结构。
采用这种结构,可以用简单的运算和很少的存储容量对发信系统的放大器发生的振幅失真进行补偿。
又,本发明是具备计算发信正交基本频带信号的功率值的功率计算部、用所述功率值根据预先设定的近似式计算振幅失真补偿系数的补偿系数计算部、对上述发信正交基本频带信号进行正交调制的正交调制部、使用上述振幅失真补偿系数对正交调制信号的振幅失真进行补偿的振幅失真补偿部、对调制信号进行放大的放大器、分配所述放大器的输出的分配器、将上述分配器的输出之一输入,进行正交检波的正交检波部,以及将正交检波信号与上述功率值加以比较,计算误差,根据所述误差更新上述近似式的系数的值的系数更新部的结构。
采用这种结构,可以用反馈回路减小用近似式计算的振幅失真补偿数据的误差,以进行更高精度的振幅失真补偿。


图1为本发明实施形态1的发信装置的主要方框图。
图2为本发明实施形态2的发信装置的主要方框图。
图3为本发明实施形态3的发信装置的主要方框图。
图4为本发明实施形态4的发信装置的主要方框图。
图5为本发明实施形态5的发信装置的主要方框图。
图6为本发明实施形态6的发信装置的主要方框图。
图7为本发明实施形态7的发信装置的主要方框图。
图8为本发明实施形态8的发信装置的主要方框图。
图9为本发明实施形态9的发信装置的主要方框图。
图10是已有的发信装置的主要方框图。
图11是上面所述以外的已有的发信装置的主要方框图。
本发明的最佳实施方式下面用附图对本发明的发信装置的实施形态进行具体说明。
实施形态1图1是本发明实施形态1的发信装置的主要方框图。
图1所示的发信装置具备第1振幅计算部101、限幅表102、限幅部103、非线性失真补偿装置104、正交调制部108、放大器109等。
非线性失真补偿装置104具备第2振幅计算部105、使用RAM的补偿表106、失真补偿部107、耦合器110、解调部111及推定部112。
而且,在图1中符号113为发信信号(I及Q通道的发信数字正交基本频带信号)、114为发信信号的振幅信息,115为振幅限制系数,116为振幅限制信号,117为振幅限制信息,118为失真补偿系数,119为失真补偿信号,120为RF信号,121为放大RF信号,122为输出信号,123为反馈RF信号,124为反馈基本频带信号,125为系数更新信号。
下面对具有这样的结构的发信装置的动作加以说明。
第1振幅计算部101根据发信信号113计算出振幅信息114并加以输出。限幅表102中,关于根据系统整体的噪声容限和泄漏的功率值等设计的调制方式,存储着适当的振幅限制信息,输出与振幅信息114对应的振幅限制系数115。
振幅限制部103根据振幅限制系数115对发信信号113的振幅进行限制,输出由此得到的限幅信号116。在这里实行的振幅限制是限制极短时间里突出的振幅。而限幅信号116的泄漏功率显然可以根据调制方式和振幅限制信息事前设计。
非线性失真补偿装置104与已有例中参照图10所说明的情况大致相同地对放大器109的非线性失真进行补偿。
也就说,第2振幅输出部105根据振幅限制信号116计算出振幅限制信号117输出。补偿表106根据限制振幅信息117输出失真补偿系数118。失真补偿部107根据失真补偿系数118与振幅限制信号116计算失真补偿信号119。正交调制部108将失真补偿信号119调制为作为载波波段的信号的RF信号120。放大器109对RF信号120进行功率放大,将放大的RF信号121输出。
耦合器110把放大的RF信号121的一部分作为RF反馈信号123输出,其余的作为输出信号122输出。解调部111把RF反馈信号123解调为基本频带反馈信号124。推定部112以振幅限制信号116为目标值,根据通过系数更新信号125读出的失真补偿系数118与限制振幅信号117及基本频带反馈信号124,通过系数更新信号125,对补偿表106存储的失真补偿系数进行更新。
其结果是,振幅限制信号116与基本频带反馈信号124之间的线性关系由补偿表106存储的失真补偿系数保持。
输出信号122的失真成份与振幅限制信号116的失真成份是均衡的。如前所述,振幅限制信号116可以很容易地根据调制方式与振幅限制表102存储的振幅限制信息设计,作为系统整体的失真成份可以借助于振幅限制信息进行控制。
在已有的非线性失真补偿技术中,把最大振幅信号分配在放大器的最大输出值上,但是具有最大值的振幅的信号由于其存在机率低,即使是使最大振幅信号有一些变形,对泄漏功率影响也不大。因此,可以利用对最大振幅信号进行限幅,相对提高平均振幅的方法提高放大器的放大效率。
如上所述采用第1实施形态,由于在进行非线性失真补偿的前级对大振幅的信号进行限幅,所以最大振幅值下降,以此可以使放大器121有宽余,能够谋求提高平均功率。
另一方面,振幅限制的失真成份,可以根据其调制方式和限制特性事前设计,因此可以把来自非线性的信号频带以外的泄漏功率抑制在规定值以下,使用到放大器121的非线性范围为止的部分,可以提高功率放大的效率。
由于可以这样用简单的结构控制失真分量,可以构成比已有的非线性失真补偿技术更有效的发信装置。
通常对振幅大的信号加以抑制在提高效率上是有效的,而使振幅小的信号伸展也可以取得同样的效果。又,将前者与后者加以组合,使振幅范围变窄,可以谋求进一步提高效率。
实施形态2图2表示本发明实施形态2的发信装置的主要方框图。在该图2所示的实施形态中,与图1所示的第1实施形态的各部对应的部分标以相同的符号,省略其说明。
图2所示的发信装置与图1所示的发信装置的不同之处在于,如图2的非线性失真补偿装置201所示,省略图1所示的非线性失真补偿装置104的第2振幅计算部105,可以把从振幅计算部101输出的发信信号的振幅幅度信息114输出到补偿表106及推定部112。
在这样的结构中,第1振幅计算部101算出的振幅信息114输出到补偿表106及推定部112,补偿表104根据振幅信息114输出失真补偿系数118。
又,推定部112以振幅限制信号116为目标值,根据通过系数更新信号125从补偿表106读出的波形补偿系数与振幅信息114、基本频带反馈信号124,通过更新信号125更新补偿表106中存储的失真补偿系数,其他动作与第1实施形态中所说明的相同。
这样,采取实施形态2,除了可以得到与第1实施形态同样的效果外,其结构还可以从非线补偿装置201省去振幅计算部,因此可以比第1实施形态省去这一部分,使装置的结构简化,使整体小型化。
实施形态3图3是表示本发明实施形态3的发信装置的主要方框图。在该图3所示的实施形态3中与图1所示的第1实施形态的各部对应的部分标以相同的符号,省略其说明。
图3所示的发信装置与图1所示的发信装置的不同之处在于,取代图1所示的振幅限制表102,设置图3所示的限制系数计算部3 01,将该限制系数计算部301算出的振幅限制系数302输出到振幅限制部103。
又,限制系数计算部301与第1振幅计算部101、振幅限制部103一起,可以以作为发信装置的构成要素的(未图示的)DSP(数字信号处理器)的剩余运算能力实现。
在这样的结构中,在限制系数计算部301,就根据整个系统的噪声容限和泄漏功率值设计的调制方式,预先定义适当的振幅限制系数运算方法,根据振幅信息114输出振幅限制系数302。振幅限制部103根据振幅限制系数302与发信信号113计算出振幅限制信号116。
振幅限制信号116可以根据调制方式和限制系数计算部301定义的运算方法方便地设计,整个系统的失真成份可以利用振幅限制系数运算方法控制。其他动作与第1实施形态中说明的相同。
这样,采用实施形态3,除了可以得到与第1实施形态相同的效果外,由于设置已有的限制系数计算部301作为发信装置的结构要素取代使用ROM等存储器构成的振幅限制表102,可以比第1实施形态省去这一部分,使装置的结构简化,使整体小型化。
实施形态4图4是表示本发明实施形态4的发信装置的主要方框图。在该图4所示的实施形态4中,在与图3所示的实施形态3的各部对应的部分标以相同的符号,省略其说明。
图4所示的发信装置与图3所示的发信装置的不同之处在于,如图4的非线性失真补偿装置201所示,省去图3所示的非线性失真补偿装置104的第2振幅计算部105,将振幅计算部101输出的发信信号的振幅信息114输往补偿表106及推定部112。
在这样的结构中,振幅计算部101算出的振幅信息114输往补偿表106及推定部112,补偿表104根据振幅信息114输出失真补偿系数118。
又,推定部112以振幅限制信号116为目标值,根据通过系数更新信号125从补偿表106读出的失真补偿系数和振幅信息114、基本频带反馈信号124,通过系数更新信号125对补偿表106存储的失真补偿系数进行更新。其他动作与实施形态3中所作的说明相同。
这样,采取实施形态4,除了可以取得与实施形态3相同的效果外,还形成从非线性补偿装置201中省去振幅计算部的结构,因此可以比第3实施形态省去这一部分,使装置的结构简单化,使整体小型化。
实施形态5图5表示本发明实施形态5的发信装置的主要方框图。在图5所示的实施形态5中,与图1所示的第1实施形态的各部对应的部分标以相同的符号,省略其说明。
在图5中,501为非线性失真补偿装置,502为阈值存储部,503为振幅比较器,504为第1补偿表,505为第2补偿表,506为系数选择部,512为推定部,513为写入选择部,516为阈值信息,517为振幅比较结果,518为第1补偿系数,519为第2补偿系数,520为失真补偿系数,527为系数更新信号,528为第1更新信号,529为第2更新信号。
下面对这样构成的发信装置的动作加以说明。振幅计算部105根据发信信号116计算出振幅信息117输出。阈值存储部502输出阈值信息516。比较器503将振幅信息117与阈值信息516加以比较,输出表示振幅比阈值大还是比阈值小的比较结果517。
第1补偿表504与第2补偿表505根据振幅信息117分别输出第1补偿系数51 8和第2补偿系数519。系数选择部506根据振幅比较结果517,从第1补偿系数518与第2补偿系数519中选择一个,输出失真补偿系数520。
例如,在振幅比较结果517显示振幅比阈值小的情况下,系数选择部506选择第1补偿系数518,把这当作失真补偿系数520输出,在显示振幅比阈值大的情况下,系数选择部506选择第2补偿系数519,把这当做失真补偿系数520输出。失真补偿部107根据发信信号113与失真补偿系数520计算出失真补偿信号521向正交调制部108输出。
又,推定部512以发信信号514为目标值,通过写入选择部513将第1更新信号528或第2更新信号529作为系数更新信号527读出,根据失真补偿系数、振幅信息515、振幅比较结果517、基本频带反馈信号124将系数更新信号127更新输出。
写入选择部513根据振幅比较结果517,从第1更新信号528与第2更新信号529选择出更新过的系数更新信号527,对第1补偿表504或第2补偿表505的失真补偿系数进行更新。例如,在振幅比较结果517显示振幅比阈值小的情况下,写入选择部513从第1更新信号528选择更新过的系数更新信号527,对第1补偿表504的失真补偿系数进行更新,在显示出振幅比阈值大的情况下,写入选择部513从第1更新信号529选择更新过的系数更新信号527,对第2补偿表505的失真补偿系数进行更新。
已有的非一性失真补偿技术,把最大振幅信号分配于放大器的最大输出值,但是由于具有最大值的振幅的信号其存在的几率小,所以最大振幅信号即使有些失真对泄漏功率影响也不大。因此在第1补偿表504对失真补偿系数进行更新以保持线性,在第2补偿表505对失真补偿系数进行更新以调整相位,因此,振幅大的信号利用放大器增益降低对振幅进行适当限制,另一方面,由于相位分量保持着线性,可以使其具有没有大信号失真的特点。
又,由于对最大振幅信号进行限幅,平均振幅相对提高,能够使放大器的放大效率提高。
这样,采用实施形态5可以用简单的结构控制失真分量,因此可以构成比已有的非线性失真补偿技术效率高的发信装置。
图6是本发明实施形态6的发信装置的主要方框图。
在图6中,600是非线性失真补偿装置,601是I及Q通道的发信数字正交基本频率信号,602是功率计算部,603是功率计算部602计算的振幅值,604是非线性失真补偿用的补偿系数计算部,605是正交化的非线性失真补偿数据,606是失真补偿部,607是非线性失真补偿过的正交基本频带信号,608是D/A变换部,609是模拟正交基本频带信号,610是频带限制用的低通滤波器,611是受频带限制的模拟正交基本频带信号,612是正交调制器,613是调制信号,614是发信系统的放大器,615是放大的发信调制信号。
又,非线性失真补偿装置600可以以作为发信装置的构成要素的未图示的DSP的剩余运算能力实现。也就是说,功率计算部602、补偿系数计算部604及失真补偿部606分别使用的计算式包含于DSP的程序中,而补偿系数计算部604计算时使用的系数可以借助于存储在DSP的程序中的数据区域实现。
下面对这样构成的发信装置的动作加以说明。首先,在功率计算部602,根据发信数字正交基本频带信号601计算发信信号的振幅值603。这可以用P代表振幅值603按照下式计算。P=I2+Q2…(1)接着,以该计算的发信信号的振幅值603为输入值,在补偿系数计算部604,用近似式计算将具有发信系统的非线性失真特性的相反特性的非线性失真补偿数据正交化的非线性失真补偿数据605。这是在例如以P为输入的n次多项式,如下式(2)及(3)所示对同相分量Ci与正交分量Cq进行计算。Ci=ainPn+ain-1Pn-1+…+ajlP1+ aioPo… (2)Cq=aqnPn+aqn-1Pn-1+…+aqlP1+ aqopo… (3)在失真补偿部606,进行发信数字正交基本频带信号601与正交化的非线性失真补偿数据605的复数相乘,输出进行过非线性失真补偿的正交基本频带信号607。这是把正交基本频带信号607的I及Q通道分量以I′及Q′表示,按下式(4)及(5)计算。I′=ICi- QCq…(4)Q′=ICq- QCi… (5)这样的非线性失真补偿的正交基本频带信号607用D/A变换部608变换成模拟信号,利用低通滤波器610进行频带限制,得到模拟正交基本频带信号611。然后,用正交调制器612进行正交调制,变成调制信号613之后,用发信系统的放大器614放大到所需大小,输出发信调制信号615。
还可以采取将正交调制器612换成对数字正交频带信号进行正交调制的类型的调制器,在该正交调制器与放大器614之间连接D/A变换部和低通滤波器的结构。
这样,采用实施形态6,非线性失真补偿装置600具有能够从输入的正交基本频带信号求信号的功率,用以该值为参数的失真补偿用的近似式计算失真补偿系数,用其进行非线性失真补偿,同时用对调制输出被分配的输出进行解调得到的正交信号与正交基本频带信号的误差,更新近似式的系数的结构,因此可以把对发信系统的放大器614发生的非线性失真进行补偿的非线性失真补偿装置600做成不必用RAM或ROM等实现的存储表的小型结构。
实施形态7图7是本发明实施形态7的发信装置的主要方框图。在该图7所示的实施形态7中,与图6所示的实施形态6的各部对应的部分标以相同的符号,省略其说明。
在图7中,700为非线性失真补偿装置,704为振幅失真补偿用的补偿系数计算部,705为振幅失真补偿数据,707为模拟正交基本频带信号,709为受频带限制的模拟正交基本频带信号,711是调制信号,712是振幅失真补偿用的增益控制放大器,613是振幅失真补偿过的调制信号。又,非线性失真补偿装置700可以用作为发信装置的结构要素的未图示的DSP的剩余运算能力实现。
下面对这样构成的发信装置的动作加以说明。首先,在功率计算部602根据发信数字正交基本频带信号601计算发信信号的振幅值603。接着把计算出的发信信号的振幅值603作为输出值用补偿系数计算部704用近似式计算具有与发信系统的振幅失真特性相反的特性的振幅失真补偿数据705。
另一方面,把发信数字正交基本频带信号601用D/A变换部608变换为模拟信号,借助于低通滤波器610进行频带限制,得到模拟正交基本频带信号709。然后,在用正交调制器612进行正交调制变成调制信号711后,用振幅失真补偿用的增益控制放大器712,根据振幅失真补偿数据705进行振幅失真补偿,得到振幅失真补偿的调制信号613。最后,用放大器614放大到所需的大小,输出发信调制信号615。
还可以采用把正交调制器612置换为对数字正交基本频带信号进行正交调制之类的调制器,在该正交调制器与增益控制放大器712之间连接D/A变换部和低通滤波器的结构。
这样,采用实施形态7,非线性失真补偿装置700是能够从输入的正交基本频带信号求信号的功率,借助于以该值为参数的失真补偿用的近似式计算振幅失真补偿系数,以此根据振幅失真补偿系数对正交调制信号进行振幅失真补偿,得到振幅失真的调制信号的结构,因此可以不使用以RAM或ROM等实现的存储表,将非线性失真补偿装置700做成小型结构。
实施形态8图8表示本发明实施形态8的发信装置的主要方框图。在该图8所示的实施形态中,与图6及图7所示的实施形态6及7的各部对应的部分标以同一标号,省略其说明。
在图8中,800是非线性失真补偿装置,816是方向性耦合器,817分配的发信调制信号,818是正交检波部,819是正交检波过的正交基本频带信号,820是频带限制用的低通滤波器,821是频带受限制的正交基本频带信号,822是A/D变换部,823是数字正交基本频带信号,824是系数更新部,825是用于计算补偿系数的近似式的系数数据。
又,非线性失真补偿装置800的功率计算部602,补偿系数计算部704及系数更新部824能够以作为发信装置的构成要素的未图示的DSP的剩余运算能力实现。
下面对这样构成的发信装置的动作加以说明。首先,在功率计算部602根据发信数字正交基本频带信号601计算发信信号的振幅值603。接着,把计算出的发信信号的振幅值603作为输入值,在补偿系数计算部704用近似式计算具有与发信系统的振幅特性相反的特性的振幅失真补偿数据705。
另一方面,用D/A变换部606把发信数字正交基本频带信号601变换为模拟信号,用低通滤波器610进行频带限制,得到模拟正交基本频带信号709。然后,在用正交调制器612进行正交调制,变成调制信号711之后,再用振幅失真补偿用的增益控制放大器712,根据振幅失真补偿数据705进行振幅失真补偿之后,得到振幅失真补偿过的调制信号713。用放大器614放大到所需的大小,输出发信调制信号615。这时,在方向性耦合器816将发信调制信号615加以分配。
分配的发信调制信号817由正交检波部818进行正交检波,在通过限制频带用的低通滤波器820之后,由A/D变换部822变换为数字信号,得到数字正交基本频带信号823。系数更新部824将近似式的系数数据825加以更新,使数字正交基本频带信号823的振幅与发信信号的振幅值603的差成为最小。
这样,采用实施形态8,可以这样来构成非线性失真补偿装置800,就是从输入的正交基本频带信号求信号的功率,用以该值为参数的失真补偿用的近似式计算振幅失真补偿系数,根据振幅失真补偿系数利用其对正交调制信号进行振幅失真补偿,对振幅失真补偿过的调制信号进行分配,在对该分配过的调制信号进行正交检波之后,更新振幅补偿系数,使检波信号(输出信号)和先前已得出功率的输入信号的差为最小。由于是这样构成非线性失真补偿装置800,可以不使用以RAM或ROM等实现的存储表,使其小型化,同时形成能够补偿随温度变化等引起的环境变化而变化的失真的结构。
实施形态9图9是本发明实施形态9的发信装置的主要方框图。在该图9所示的实施形态9中,与图6及图8所示的实施形态6及8的各部对应的部分标以相同的符号,省略其说明。
在图9中,900是非线性失真补偿装置,904是利用振幅值603,参照非线性失真补偿用的固定的补偿系数的ROM构成的固定系数参照部,905是正交化的固定非线性失真补偿系数,908是失真补偿部,926是系数更新部,927是用于计算修正系数的近似式的系数数据。
又,非线性失真补偿装置900的功率计算部602、补偿系数计算部604及系数更新部926可以用作为发信装置的结构要素的未图示的DSP的剩余运算能力实现。
下面对这样构成的发信装置的动作加以说明。首先,在功率计算部602根据发信数字正交基本频带信号601按上述式(1)计算发信信号的振幅值603。接着,以计算出的发信信号的振幅值603为地址,参照固定系数参照部904,把具有预先计算过的发信系统的非线性失真特性的相反特性的非线性失真补偿数据作为正交化的非线性失真补偿系数905取值。
在这里,如式(1)所示以P表示振幅值603的情况下,与P对应的非线性失真补偿系数905用(di、dq)表示。
同时,以计算的发信信号的振幅值603为输入值,在修正系数计算部604用上述近似式(2)及(3)计算用于修正非线性失真补偿系数905的修正系数605。
在失真补偿部908,将与发信数字正交基本频带信号601正交化的非线性失真补偿数据905和修正系数605复数相乘,输出非线性失真补偿过的正交基本频带信号607。
以I″及Q″表示正交基本频带信号607的I及Q通道的分量,则首先使用非线性失真补偿系数905的(di、dq),按下式(6)及(7)对此进行计算。I′=Idi-Qdq…(6)Q′=Idq-Qdi…(7)接着,对上式(6)及(7)的结果,使用修正系数605的(Ci、Cq),按下式(8)及(9)进行计算。I" = I′Ci-Q′Cq… (8)Q" = I′Cq-Q′Ci… (9)在D/A变换部608,将这样进行过非线性失真补偿的正交基本频带信号607变换成模拟信号,利用低通滤波器610进行频带限制,得到模拟正交基本频带信号611。然后,在正交调制器612进行正交调制,变换成调制信号613之后,用发信系统的放大器614放大到所需的大小,输出发信调制信号615。这时,用方向性耦合器816分配发信调制信号615。
在正交检波部818对分配的发信调制信号817进行正交检波,通过频带限制用的低通滤波器820之后,用A/D变换部822变换为数字信号,得到数字正交基本频带信号823。系数更新部926对计算修正系数用的近似式的系数数据927进行更新,使正交基本频带信号601与823的差成为最小。
这样,采用实施形态9,可以这样来构成非线性失真补偿装置900,就是根据输入的正交基本频带信号求信号的功率,以该值为参数求非线性失真补偿系数,同时利用失真补偿用的近似式计算补偿系数,以其进行失真补偿,对该失真补偿信号经正交调制后的调制信号进行分配,将该分配的调制信号进行正交检波后,对近似式的补偿系数进行更新,使检波信号(输出信号)与先前求得功率的输入信号的差为最小。由于是这样构成非线性补偿装置900,可以形成能够以更高的精度补偿随温度变化等引起的环境变化而变化的失真的结构。
又,上述图6~图9所示的实施形态6~9的各非线性失真补偿装置600、700、800、900可以置换为图1~图5所示的非线性失真补偿装置104、201、501中的某一种。但是,在置换时必须根据第1实施形态至第9实施形态中说明的内容对正交调制器的种类、D/A变换部及低通滤波器的位置、增益控制放大器712的位置进行调整。
还有,各非线性失真装置600、900也可个别地、或者包含作为结构要素的未图示的DSP,以逻辑电路等构成的硬件结构IC化。
还可以把图3及图4所示的振幅计算部101、限制系数计算部301及振幅限制部103三个要素与各非线性失真补偿装置600、900中的某一个组合,以硬件结构IC化,或者也可以与各非线性失真补偿装置600、900的某一种的组合一起包含于DSP,以硬件结构IC化。
在这些IC化的情况下,能够快速进行非线性失真补偿。
工业应用性如上所述,本发明的发信装置能使用于无线电通信系统的发信装置,适用于对发信系统发生的非线性失真进行补偿。
权利要求
1.一种发信装置,其特征在于,具备计算发信正交基本频带信号的第1振幅值的第1振幅计算手段、存储与所述第1振幅值对应的振幅限制信息的振幅限制表、用所述振幅限制信息限制所述发信正交基本频带信号的振幅的第1振幅限制手段、对受到限幅的发信正交基本频带信号的进行正交调制,输出RF信号的正交调制手段,以及对上述RF信号进行放大的放大手段。
2.根据权利要求1所述的发信装置,其特征在于,还具备对受到第1振幅限制手段限幅的发信正交基本频带信号的的非线性失真进行补偿的非线性失真补偿手段,将用所述非线性失真补偿手段进行过非线性失真补偿的发信正交基本频带信号输往所述正交调制手段。
3.根据权利要求2所述的发信装置,其特征在于,非线性失真补偿手段具备对由第1振幅限制手段限幅的发信正交基本频带信号的第2振幅值进行计算的第2振幅计算手段、存储与所述第2振幅值对应的非线性补偿信息的补偿表、用所述非线性补偿信息对所述被限幅的发信正交基本频带信号进行失真补偿、输出发信正交基本频带信号的失真补偿手段、将放大手段放大过的RF信号的一部分反馈的耦合手段、将被反馈的所述RF信号解调为基本频带反馈信号的解调手段,以及用所述被限幅的发信正交基本频带信号与所述基本频带反馈信号及所述第2振幅值更新所述非线性补偿信息,改写所述补偿表的推定手段。
4.根据权利要求2所述的发信装置,其特征在于,非线性失真补偿手段具备存储与第1振幅值对应的非线性补偿信息的补偿表、用所述非线性补偿信息对被第1幅度限制手段限幅的发信正交基本频带信号进行失真补偿、输出发信正交基本频带信号的失真补偿手段、将放大手段放大过的RF信号的一部分反馈的耦合手段、将被反馈的所述RF信号解调为基本频带反馈信号的解调手段,以及用所述被限幅的发信正交基本频带信号与所述基本频带反馈信号及所述第1振幅值更新所述非线性补偿信息,改写所述补偿表的推定手段。
5.根据权利要求2所述的发信装置,其特征在于,非线性失真补偿手段具备对由第1振幅限制手段限幅的发信正交基本频带信号的第2振幅值进行计算的第2振幅计算手段、存储预定的阈值的阈值存储手段、将所述振幅值与所述阈值加以比较的比较手段、存储与所述振幅值对应的非线性补偿系数的第1补偿表、存储与所述振幅值对应的相位补偿系数的第2补偿表、根据所述比较手段的比较结果选择所述非线性补偿系数或所述相位补偿系数的系数选择手段、用所述系数选择手段选择的所述非线性补偿系数或所述相位补偿系数对所述发信正交基本频带信号进行失真补偿的失真补偿手段、将放大手段放大过的所述RF信号的一部分反馈的耦合手段、将被反馈的所述RF信号解调为基本频带反馈信号的解调手段、用所述发信正交基本频带信号、所述基本频带反馈信号、所述振幅值及所述比较结果推定所述非线性补偿系数及所述相位补偿系数各自的系数更新信息的推定手段,以及用所述比较结果与所述系数更新信息分别改写所述非线性补偿系数与所述相位补偿系数的写入手段。
6.根据权利要求2所述的发信装置,其特征在于,非线性失真补偿手段具备对由第1振幅限制手段限幅的发信正交基本频带信号的功率值进行计算的功率计算手段、用所述功率值、借助于预先设定的近似式计算非线性失真补偿系数的补偿系数计算手段,以及用所述非线性失真补偿系数对所述发信正交基本频带信号的非线性失真进行补偿的失真补偿手段。
7.根据权利要求2所述的发信装置,其特征在于,非线性失真补偿手段具备对由第1振幅限制手段限幅的发信正交基本频带信号的功率值进行计算的功率计算手段、用所述功率值、借助于预先设定的近似式计算振幅失真补偿系数的补偿系数计算手段,以及用所述振幅失真补偿系数,对正交调制手段对所述发信正交基本频带信号进行正交调制得到的正交调制信号进行振幅失真补偿的振幅失真补偿手段。
8.根据权利要求2所述的发信装置,其特征在于,非线性失真补偿手段具备对由第1振幅限制手段限幅的发信正交基本频带信号的功率值进行计算的功率计算手段、用所述功率值,借助于预先设定的近似式计算振幅失真补偿系数的补偿系数计算手段、用所述振幅失真补偿系数,对正交调制手段对所述发信正交基本频带信号进行正交调制得到的正交调制信号进行振幅失真补偿的振幅失真补偿手段、分配放大手段的输出的分配手段、输入所述分配手段的输出的一部分进行正交检波的正交检波手段,以及将正交检波信号与所述功率值加以比较,计算出误差,根据所述误差更新所述近似式的系数值的系数更新手段。
9.根据权利要求2所述的发信装置,其特征在于,非线性失真补偿手段具备对由第1振幅限制手段限幅的发信正交基本频带信号的功率值进行计算的功率计算手段、用所述功率值,从预先设定的非线性失真补偿表输出失真补偿系数的图表参照手段、输入所述功率值,用近似式计算所述失真补偿系数的修正值的修正系数计算手段、用所述失真补偿系数和所述修正系数对所述发信正交基本频带信号的非线性失真进行补偿的失真补偿手段、分配放大手段的输出的分配手段、输入所述分配手段的输出的一部分进行正交检波的正交检波手段,以及将正交检波信号与所述发信正交基本频带信号加以比较,计算出误差,根据所述误差更新所述近似式的系数的系数更新手段。
10.根据权利要求2所述的发信装置,其特征在于,非线性失真补偿手段集成电路化。
11.根据权利要求2所述的发信装置,其特征在于,将非线性失真补偿手段与权利要求1所述的第1振幅计算手段、振幅限制表及第1振幅限制手段一起集成电路化。
12.根据权利要求2所述的发信装置,其特征在于,包括进行发信处理的DSP,将非线性失真补偿手段集成电路化。
13.一种发信装置,其特征在于,具备由发信正交基本频带信号计算出第1振幅值的第1振幅计算手段、计算与所述第1振幅值对应的振幅限制系数的限制系数计算手段、用所述振幅限制系数限制所述发信正交基本频带信号的振幅的第2振幅限制手段、将被限幅的发信正交基本频带信号正交调制输出RF信号的正交调制手段,以及放大所述RF信号的放大手段。
14.根据权利要求13所述的发信装置,其特征在于,还具备对由第2振幅限制手段限幅的发信正交基本频带信号的非线性失真进行补偿的非线性失真补偿手段,将用所述非线性失真补偿手段进行过非线性失真补偿的发信正交基本频带信号输往所述正交调制手段。
15.根据权利要求14所述的发信装置,其特征在于,非线性失真补偿手段具备对由第2振幅限制手段限幅的发信正交基本频带信号的第2振幅值进行计算的第2振幅计算手段、存储与所述第2振幅值对应的非线性补偿信息的补偿表、用所述非线性补偿信息对所述被限幅的发信正交基本频带信号进行失真补偿,输出发信正交基本频带信号的失真补偿手段、将放大手段放大过的RF信号的一部分反馈的耦合手段、将被反馈的所述RF信号解调为基本频带反馈信号的解调手段,以及用所述被限幅的发信正交基本频带信号与所述基本频带反馈信号及所述第2振幅值更新所述非线性补偿信息,改写所述补偿表的推定手段。
16.根据权利要求14所述的发信装置,其特征在于,非线性失真补偿手段具备存储与第1振幅值对应的非线性补偿信息的补偿表、用所述非线性补偿信息对被第2幅度限制手段限幅的发信正交基本频带信号进行失真补偿、输出发信正交基本频带信号的失真补偿手段、将放大手段放大过的RF信号的一部分反馈的耦合手段、将被反馈的所述RF信号解调为基本频带反馈信号的解调手段,以及用所述被限幅的发信正交基本频带信号与所述基本频带反馈信号及所述第1振幅值更新所述非线性补偿信息,改写所述补偿表的推定手段。
17.根据权利要求14所述的发信装置,其特征在于,非线性失真补偿手段具备对由第2振幅限制手段限幅的发信正交基本频带信号的第2振幅值进行计算的第2振幅计算手段、存储预定的阈值的阈值存储手段、将所述振幅值与所述阈值加以比较的比较手段、存储与所述振幅值对应的非线性补偿系数的第1补偿表、存储与所述振幅值对应的相位补偿系数的第2补偿表、根据所述比较手段的比较结果选择所述非线性补偿系数或所述相位补偿系数的系数选择手段、用所述系数选择手段选择的所述非线性补偿系数或所述相位补偿系数对所述发信正交基本频带信号进行失真补偿的失真补偿手段、将放大手段放大过的所述RF信号的一部分反馈的耦合手段、将被反馈的所述RF信号解调为基本频带反馈信号的解调手段、用所述发信正交基本频带信号、所述基本频带反馈信号、所述振幅值及所述比较结果推定所述非线性补偿系数及所述相位补偿系数各自的系数更新信息的推定手段,以及用所述比较结果与所述系数更新信息分别改写所述非线性补偿系数与所述相位补偿系数的写入手段。
18.根据权利要求14所述的发信装置,其特征在于,非线性失真补偿手段具备对由第2振幅限制手段限幅的发信正交基本频带信号的功率值进行计算的功率计算手段、用所述功率值、借助于预先设定的近似式计算非线性失真补偿系数的补偿系数计算手段,以及用所述非线性失真补偿系数对所述发信正交基本频带信号的非线性失真进行补偿的失真补偿手段。
19.根据权利要求14所述的发信装置,其特征在于,非线性失真补偿手段具备对由第2振幅限制手段限幅的发信正交基本频带信号的功率值进行计算的功率计算手段、用所述功率值,借助于预先设定的近似式计算振幅失真补偿系数的补偿系数计算手段,以及用所述振幅失真补偿系数,对正交调制手段对所述发信正交基本频带信号进行正交调制得到的正交调制信号进行振幅失真补偿的振幅失真补偿手段。
20.根据权利要求14所述的发信装置,其特征在于,非线性失真补偿手段具备对由第2振幅限制手段限幅的发信正交基本频带信号的功率值进行计算的功率计算手段、用所述功率值,借助于预先设定的近似式计算振幅失真补偿系数的补偿系数计算手段、用所述振幅失真补偿系数,对正交调制手段对所述发信正交基本频带信号进行正交调制得到的正交调制信号进行振幅失真补偿的振幅失真补偿手段、分配放大手段的输出的分配手段、输入所述分配手段的输出的一部分进行正交检波的正交检波手段,以及将正交检波信号与所述功率值加以比较,计算出误差,根据所述误差更新所述近似式的系数值的系数更新手段。
21.根据权利要求14所述的发信装置,其特征在于,非线性失真补偿手段具备对由第2振幅限制手段限幅的发信正交基本频带信号的功率值进行计算的功率计算手段、用所述功率值,从预先设定的非线性失真补偿表输出失真补偿系数的图表参照手段、输入所述功率值,用近似式计算所述失真补偿系数的修正值的修正系数计算手段、用所述失真补偿系数和所述修正系数对所述发信正交基本频带信号的非线性失真进行补偿的失真补偿手段、分配放大手段的输出的分配手段、输入所述分配手段的输出的一部分进行正交检波的正交检波手段,以及将正交检波信号与所述发信正交基本频带信号加以比较,计算出误差,根据所述误差更新所述近似式的系数的系数更新手段。
22.根据权利要求14所述的发信装置,其特征在于,非线性失真补偿手段集成电路化。
23.根据权利要求14所述的发信装置,其特征在于,将非线性失真补偿手段与权利要求1所述的第1振幅计算手段、振幅限制表及第1振幅限制手段一起集成电路化。
24.根据权利要求14所述的发信装置,其特征在于,包括进行发信处理的DSP,将非线性失真补偿手段集成电路化。
25.一种发信装置,其特征在于,具备对发信正交基本频带信号的功率值进行计算的功率计算手段、用所述功率值,借助于预先设定的近似式计算非线性失真补偿系数的补偿系数计算手段、用所述非线性失真补偿系数,对所述发信正交基本频带信号的非线性失真进行补偿的失真补偿手段、对失真补偿过的发信正交基本频带信号进行正交调制的正交调制手段,以及放大所述正交调制信号的放大手段。
26.一种发信装置,其特征在于,具备对发信正交基本频带信号的功率值进行计算的功率计算手段、用所述功率值,借助于预先设定的近似式计算振幅失真补偿系数的补偿系数计算手段、对所述发信正交基本频带信号进行正交调制的正交调制手段,以及用所述振幅失真补偿系数,对所述正交调制信号的振幅失真进行补偿的振幅失真补偿手段。
27.一种发信装置,其特征在于,具备对发信正交基本频带信号的功率值进行计算的功率计算手段、用所述功率值,借助于预先设定的近似式计算振幅失真补偿系数的补偿系数计算手段、对所述发信正交基本频带信号进行正交调制的正交调制手段、用所述振幅失真补偿系数进行正交调制信号的振幅失真补偿的振幅失真补偿手段、放大调制信号的放大手段、分配所述放大手段的输出的分配手段、输入所述分配手段的输出的一部分进行正交检波的正交检波手段,以及将正交检波信号与所述功率值加以比较,计算出误差,根据所述误差更新所述近似式的系数值的系数更新手段。
28.一种发信装置,其特征在于,具备对发信正交基本频带信号的功率值进行计算的功率计算手段、用所述功率值,从预先设定的非线性失真补偿表输出失真补偿系数的图表参照手段、输入所述功率值,用近似式计算所述失真补偿系数的修正值的修正系数计算手段、用所述失真补偿系数和所述修正系数对所述发信正交基本频带信号的非线性失真进行补偿的失真补偿手段、对所述失真补偿手段的输出进行正交调制的正交调制手段、对所述正交调制手段的输出进行放大的放大手段、分配所述放大手段的输出的分配手段、输入所述分配手段的输出的一部分进行正交检波的正交检波手段,以及将正交检波信号与所述发信正交基本频带信号加以比较,计算出误差,根据所述误差更新所述近似式的系数的系数更新手段。
全文摘要
本发明揭示一种发信装置,用功率计算手段求得的发信正交基本频带信号的振幅值,以补偿系数计算手段利用近似式计算出非线性失真补偿数据,利用该数据以非线性失真补偿手段进行非线性失真补偿,以此可以不使用存储表而对发信系统的放大器产生的非线性失真进行补偿,能够得到减小失真效果大的非线性失真补偿装置。
文档编号H04L27/36GK1208528SQ97191742
公开日1999年2月17日 申请日期1997年11月13日 优先权日1996年11月19日
发明者松冈昭彦, 折桥雅之, 佐川守一, 高桥宪一, 美细津公英 申请人:松下电器产业株式会社
文档序号 : 【 7574561 】

技术研发人员:松冈昭彦,折桥雅之,佐川守一,高桥宪一,美细津公英
技术所有人:松下电器产业株式会社

备 注:该技术已申请专利,仅供学习研究,如用于商业用途,请联系技术所有人。
声 明此信息收集于网络,如果你是此专利的发明人不想本网站收录此信息请联系我们,我们会在第一时间删除
松冈昭彦折桥雅之佐川守一高桥宪一美细津公英松下电器产业株式会社
一种基于微信的数字证书认证疑币的兑换方法及装置制造方法 供水系统语言发信装置的制作方法
相关内容