首页  专利技术  其他产品的制造及其应用技术

基于邻域约束的空地异构机器人系统路径规划方法

2025-05-30 16:40:02 233次浏览
基于邻域约束的空地异构机器人系统路径规划方法
【专利摘要】本发明涉及了一种基于邻域约束的空地异构机器人系统路径规划方法,异构机器人系统由至少一台地面移动机器人和至少一台空中飞行机器人组成;其特征在于:地面移动机器人和空中飞行机器人同时从起点出发,依次访问N个子任务点执行子任务,最后共同到达目的地;本发明考虑各子任务点的位置允许在一定邻域内有效,模引入了邻域约束。此外还考虑了空中飞行机器人和地面移动机器人各自最大速度约束。本发明能够保证空地异构机器人系统充分利用各自特点实现优势互补,在一定的邻域范围内完成任务,提高了路径规划的效率,节约资源,可应用于海上合作快速救援、目标识别与通信组网、协作环境感知与定位等领域,因而具有广泛的应用前景。
【专利说明】
基于邻域约束的空地异构机器人系统路径规划方法
技术领域
[0001] 本发明属于移动机器人路径规划领域,尤其设及空地异构机器人系统在运动约束 条件下基于邻域约束的路径规划方法。
【背景技术】
[0002] 随着科技的进步,机器人技术与人类的生活越来越紧密联系在一起。尤其是多种 新型机器人的出现,使得W往单一机器人无法完成的复杂任务可W依靠多机器人合作来完 成。例如:过去几十年来出现了大量有关多机器人合作的研究,如合作围捕、地图构建、共同 覆盖、目标跟踪、通信中继、信息传感、编队、组网等。在过去多机器人系统的研究中,针对同 构机器人系统的比较多。而那些异构机器人系统,通常由于各个机器人个体具有不同的功 能和外形、不同的载荷和运动能力而拥有差异巨大的动力学和运动学。当运些个体在一起 相互协作时会产生冗余与禪合等影响,因此具有很大的挑战。
[0003] 地面移动机器人和空中飞行机器人是两类典型的异构机器人。地面机器人的运动 局限于二维平面,而空中机器人具有强大的=维运动能力。通常情况下,空中机器人运动迅 速,响应快捷,不易受到地面障碍的阻挡,但滞空时间往往有限,而且自身定位精度相对较 低,获得的目标信息精度也较低。而地面机器人可W携带大量物资,穿越狭窄的通道"边走 边完成任务",针对目标完成准确的识别与跟踪,甚至可完成其它更加精细的任务,但是容 易受到地面障碍的阻挡,对目标采集图像信息时视角单一,无法获得全局图像信息。因此, 路径规划问题必须考虑空中机器人和地面机器人各自在功能分配上的优势,运给异构系统 的研究带来了新的挑战。
[0004] 目前已有的异构机器人系统路径规划方法主要有两类:一类是建立组合优化模 型,然后采用启发式方法求解,因复杂度高,往往只能求得次优解;还有一类便是基于数学 规划模型的方法,运一类方法在计算效率方面具有较大的优势,但是通常需要借助于大量 的简化和假设。现有的方法,无论是组合优化方法还是数学优化方法,均将各个待访问的目 标点当作精确位置,而在实际应用中,目标点通常是一个范围或邻域,比如救援地点、物资 投放地点都允许在一定范围内有效,而义用太精确的任务规划,不利于效率提局。

【发明内容】

[0005] 本发明为了解决上述技术问题,提供了一种基于邻域约束的空地异构机器人系统 路径规划方法。在邻域约束范围内访问任务点,提高了路径规划的效率,减少了路径规划方 法的复杂度。
[0006] 为解决上述技术问题,本发明采用如下技术方案:
[0007] -种基于邻域约束的空地异构机器人系统路径规划方法,异构机器人系统由至少 一台地面移动机器人和至少一台空中飞行机器人组成;其特征在于:地面移动机器人和空 中飞行机器人同时从起点出发,依次访问N个子任务点执行子任务,最后共同到达目的地; 为了节省能量,地面移动机器人在设定时间段充当移动平台载着空中飞行机器人运动,当 接收到子任务时,空中飞行机器人从地面移动机器人上自主起飞去执行所述子任务,完成 子任务后空中飞行机器人再返回地面移动机器人补充能量,并陪同地面移动机器人一起运 动继续完成下一个子任务;空中机器人在前往执行某个子任务时,与其搭配的地面移动机 器人持续前进W尽可能与空中飞行机器人协调同步;全部任务完成后,所有空中飞行机器 人均返回并降落在各自搭配的地面移动机器人上;在此过程中需要计算出地面移动机器人 的路径点,W及飞行机器人从地面机器人平台上起飞,执行完所有子任务后再返回的整个 航迹点;通过引入二值变量对各个子任务点依次访问,然后分别建立地面机器人和空中机 器人的运动约束,W完成对所有子任务点访问的总时间最小为目标函数建立混合整数规划 模型;所述设定时间段设置为整个任务过程中空中飞行机器人执行子任务之外的时间段, 且W空地双方能够相互识别和定位为前提,每次空中飞行机器人执行子任务的时间须小于 其自身最大滞空时间。
[0008] 上述基于邻域约束的空地异构机器人系统路径规划方法主要包括如下步骤:
[0009] 步骤1:设置异构机器人系统的系统参数:设置整个异构机器人系统的运动起点、 任务点、目标点的位置W及每个子任务点规定的邻域范围大小;设置地面移动机器人与空 中飞行机器人各自的最大运动速度;设置空中机器人的最大滞空时间与补充能量的最小时 间参数;
[0010] 步骤2:根据空地异构机器人自身约束与相互间的约束条件,建立混合整数优化模 型,具体过程如下:
[0011] 步骤2-1:异构机器人系统所包含的机器人一起从起始点出发,通过引入二值变 量,保证每个子任务点必须被访问一次,且最多只能访问一次;
[0012] 步骤2-2:当异构机器人系统一起运动至某一地点时,空中飞行机器人离开运载平 台单独执行任务,在满足空中飞行机器人最大滞空时间与最大运动速度的约束条件下,完 成对一个或多个子任务点邻域范围内的访问;
[0013] 步骤2-3:在步骤2-2进行的过程中,地面机器人仍然W最大速度沿直线路径运动, 并满足最大运动速度约束条件;
[0014] 步骤2-4:飞行机器人完成任务之后,返回降落在地面移动机器人平台上,在随地 面移动机器人前进的过程中补充能量,为下次任务的到来做准备;为了确保任务的顺利完 成,避免半途而废,空中机器人只有在充电完成后才能再次起飞,在充电过程中,需满足最 短充电时间约束;同时,在整个协同运动过程中,地面机器人仍需保证最大运动速度约束;
[0015] 步骤2-5:循环步骤2-2、步骤2-3、步骤2-4,直至异构机器人系统完成对所有子任 务点的访问,最终一起到达目标点;
[0016] 步骤2-6:最后,W完成对所有子任务点访问的总时间最小为代价,建立目标函数;
[0017] 步骤2-7: W上述步骤2-1至步骤2-6所得的约束条件与目标函数建立混合整数非 线性规划模型;
[0018] 步骤3:根据建立的混合整数优化模型进行路径规划,并利用异构机器人系统执行 规划的路径。
[0019] 上述技术方案中,步骤1中,设定异构机器人系统依次访问多个子任务点:Tl, T2, ...,Tn,最后共同到达目的地Te;地面移动机器人W最大速度Vc,max运动,空中飞行机器人 最大运动速度为Vh ,max O
[0020] 上述技术方案中,步骤2-2中,所述子任务点Tl的邻域WTi点为圆屯、,WRi为半径形 成圆形分析窗口,其中,T功邻域中屯、瓜为邻域半径谊中飞行机器人对某个子任务点的访 问只需要落入该子任务点的邻域范围即可。
[0021] 上述技术方案中,步骤2-2中,空中飞行机器人若同时访问多个子任务点,每个子 任务点Tl可能具有不同的邻域半径,即大小各不相同的圆域。
[0022] 相对于现有技术,本发明基于邻域约束的空地异构机器人系统路径规划方法,提 出了带邻域约束的混合整数规划模型,使得空中机器人与地面机器人合作时,可W发挥各 自的优势解决更加复杂的任务。提高了路径规划的效率,减少了算法的复杂度,又在一定程 度上实现了节约能源的目的。执行任务的空中机器人只需根据自身约束与地面移动平台的 相互约束条件在邻域内完成任务即可返回,节省了时间与能源,在同等的时间段内,完成更 多的任务,大大提高了运行效率。
【附图说明】
[0023] 图1为本发明的空地异构机器人系统路径规划示意图。
[0024] 图2为本发明的异构机器人系统在邻域约束条件下的路径规划结果。
[0025] 图3为未加入邻域约束的异构机器人系统路径规划结果。
【具体实施方式】
[0026] 为了进一步说明本发明的技术方案,下面结合附图1-3对本发明进行详细的说明, 但不是对本发明的限定。
[0027] 图1为空地异构机器人系统路径规划示意图。由地面移动机器人搭载无人机从Ts 出发,依次访问N个子任务点Ti,T2, ...,Tn,最后共同到达目的地Te。其中虚线代表地面机器 人的路径,每个子任务点周围的实线圆代表各自的邻域范围。在此异构机器人系统中,地面 移动机器人W最大速度V。,max在大的范围内运动,无人机最大运动速度为Vh,max,运行速度敏 捷但范围有限,且二者都为匀速运动。
[0028] 本发明一种基于邻域约束的空地异构机器人系统路径规划方法,具体包括W下步 骤:
[0029] 步骤1:设置异构机器人系统的系统参数:设置整个系统的运动起点、任务点、目标 点W及每个子任务点规定的邻域范围;设置地面移动机器人与空中飞行机器人各自的最大 运动速度;设置空中机器人的最大滞空时间与补充能量的最小时间参数;具体设置如下所 示:
[0030] 步骤1-1:设定异构机器人系统运动起点Ts、N个子任务点W及目标点Te的位置如下 表1所示(取N=4):
[0031] 表1路径规划的起点、目标点和各子任务点坐标(单位:km)
[0032]
[0033] 步骤1-2:取各个子任务点的邻域范围为等大小的圆形区域,且半径为3km;
[0034] 步骤1-3:设置地面移动机器人与空中飞行机器人的最大运动速度分别为18km/h 和90km/h;空中飞行机器人的最大滞空时间为21min,每次充电完成的最短时间为lOmin;
[0035] 步骤2:根据空地异构机器人自身约束与相互间的约束条件,建立混合整数优化模 型,具体过程如下:
[0036] 步骤2-1:异构机器人系统所包含的机器人一起从起始点出发,通过引入二值变 量,保证每个子任务点必须被访问一次,且最多只能访问一次,具体实现方法如下:
[0037] 定义NXN维二值变量矩阵QiJ G {0,1},其中QiJ = I表示无人机连续访问任务点 Ti,Ti+i,. . .,Ti,l《i《j《N,其它情况下,aiJ = 0,贝lJ有
[00;3 引
(1 )
[0039] 其中,k = l,2,...,N;
[0040] 步骤2-2:当达到某一地点时,空中飞行机器人离开运载平台单独执行任务,在满 足空中飞行机器人最大滞空时间与最大运动速度的约束条件下,完成不同邻域范围内一个 或多个子任务点的访问,其具体实现方法包含了 W下步骤:
[0041] 步骤2-2-1:由于空中飞行器自身携带能源有限,必须在能量耗尽之前返回地面机 器人及时补充能量。定义变量矩阵f E rW,f i > 0表示无人机从ti G R2点起飞,连续访问子任 务点Tl,Tw, ...,Tj,最后在1jGR2点着陆所经过的时间,空中飞行机器人每次起飞执行任 务必须满足最大滞空时间约束:
[0042] max (2)
[00创其中,th,max表示允许的最大滞空时间,
[0044] 步骤2-2-2:通过引入任务点邻域的概念,使机器人对子任务点的访问只需要落入 各个子任务点的邻域即可,节省访问时间。设子任务点Tl的邻域点为Wi,满足如下关系:
[0045]

[0046] 其中,R功子任务点Tl的邻域范围参数,假设邻域为圆形区域;
[0047] 步骤2-2-3:设di J表示无人机从子任务点Tl的邻域点Wi-直访问到子任务点Tj的 邻域点W渔过的距离,如下:
[004引
(4)
[0049] 其中,
[0050] Pi= I I wi-wi+i I I , i = 1,2,. . .,N-I (5)
[0化1]当 时,di,j = 〇;
[0052] 步骤2-2-4:当空中机器人起飞后连续访问多个子任务点的邻域点Wi,WW,...,町, 则空中机器人的最大运动速度满足W下约束:
[0化3]
[0054]即
[005引 0i,j( I Iti-Wil |+di,j+| I )-Vh,maxfi《0 (6)
[0056] 步骤2-3:在步骤2-2进行的过程中,地面机器人仍然W最大速度沿直线路径运动, 空中机器人脱离运载平台单独执行任务,从ti点起飞,直到在点着陆,则在运段飞行时间 fi之内,地面机器人满足最大速度约束:
[0化7]
[005引 即
[0059] Qijl Iti-Ijl I-Vcmaxfi^O (7)
[0060] 其中,Vc,max表示地面机器人的最大运动速度,
[0061] 步骤2-4:飞行机器人完成任务之后,返回降落在地面移动机器人平台上,在随地 面移动平台前进的过程中补充能量,为下次任务的到来做准备;在充电过程中,需满足最短 充电时间约束;同时,在整个协同运动过程中,地面机器人仍需保证最大运动速度约束;其 具体实现方法包含了 W下步骤:
[0062] 步骤2-4-1:为了确保任务的顺利完成,避免半途而废,空中机器人只有在充电完 成后才能再次起飞。假设能量补充完成所需最小时间为tr,min,则还须满足W下约束:
[0063] tr'minCli,广 Sj《0 (8)
[0064] 其中,
[0065] 步骤2-4-2:当无人机没有外出执行任务时,保持降落并停留在地面机器人平台上 随之一起运动。设降落点坐标为。,即刚访问过任务点L,随着移动平台一起运动,直至下一 个起飞点坐标tj+i。定义变量矩阵S G ,Sj > 0表示空中机器人停留在平台上面一起运动 的时间。送段时间内地面机器人的运动也须满足最大运动速度约束:
[0066]
[0067]即
[006引 Qi'jl |1广tj+l||-Vc'maxSj《0 (9)
[0069] 其中,
[0070] 步骤2-5:循环步骤2-2、步骤2-3、步骤2-4,直至异构机器人系统完成对所有子任 务点的访问,最终一起到达目标点;
[0071] 步骤2-6:最后,W完成对所有子任务点访问的总时间最小为代价,建立目标函数。 总的花费时间y由四部分组成:
[0072] (1)空中机器人首次起飞之前与地面机器人共同运行的时情
[0073] (2)空中机器人最后一次降落在地面机器人上一起运动到达目标点时经过的时间
[0074] (3)空中机器人飞行的总时I'E
[0075] (4)在访问子任务点Tl至Tn过程中,地面机器人载着空中机器人经过的总时间 N-I E; M
[0076] 最终目标函数如式(10)所示:
[0077]
(10)
[0078] 步骤2-7: W上述步骤2-1至步骤2-6所得的约束条件与目标函数建立混合整数非 线性规划模型,其模型如式(11)所示:
[0079]
, 11 I
[0080] 步骤3:根据建立的模型,利用实验的方法得到路径规划的结果。仿真程序在计算 机上运行,借助工具箱OPTI和求解器SCIP获得最终路径规划结果,并利用异构机器人系统 执行规划的路径。
[0085] 表3邻域访问点坐标(单位:km)
[0081] 模型共包括了 66个决策变量,207条约束,机器人的运动路径规划结果如图2所示, 其中4个圆圈分别表示各子任务点的邻域。求得的决策变量a如式(12)所示,异构机器人系 统完成任务花费5.4595h。空中机器人与地面机器人的分离点、汇合点坐标,W及各邻域点 坐标分别如表2和表3所示。
[0082]
[0083]
[0084]
[0086]
[0087] 从图2中可W看出,空中机器人在ti点离开地面机器人,开始飞向子任务点Tl的邻 域点W1,访问了 Wl后接着飞向T2的邻域点W2,最后与地面机器人在b点汇合,并着陆在地面机 器人上面一起运动。当地面机器人拖着空中机器人运动的同时,也给空中机器人补充能量。 经过一段时间后空中机器人能量补给完成,在t3点再次起飞,访问子任务点T3的邻域点W3后 返回到13点与地面机器人汇合。依次类推,直至完成所有任务,地面机器人载着空中机器人 到达终点。式(12)所示变量a中取值为1的元素包括化2,〇3,3,〇4,4,表示空中机器人的起飞点 分别在访问子任务点Tl, T3,T么前,而着陆点分别在访问子任务点T2,T3,T么后,与图2所示 一致。
[0088] 如果不考虑邻域约束,求得的路径如图3所示,完成任务所需总时间为5.9130h,与 本发明所提出的方法相比,时间略有增加。比较图2和图3可W发现,空中机器人在访问子任 务点Tl和T2时采用的策略是不同的。当有邻域约束时,空中机器人会在一次飞行行动中完成 两个邻域点Wl和W2的访问。如果没有邻域约束,因待访问的两个子任务点与其邻域点相比距 离更远,空中机器人分两次完成任务,中间需要返回地面机器人补充一次能量。地面机器人 从h运动到t2所需时间为13.5896min,其中有IOmin在给空中机器人补充能量。
[0089] 综上,本发明基于邻域约束的空地异构机器人系统路径规划方法,提出了带邻域 约束的混合整数规划模型,使得空中机器人与地面机器人合作时,可W发挥各自的优势解 决更加复杂的任务。提高了路径规划的效率,减少了算法的复杂度,又在一定程度上实现了 节约能源的目的。
【主权项】
1. 一种基于邻域约束的空地异构机器人系统路径规划方法,异构机器人系统由至少一 台地面移动机器人和至少一台空中飞行机器人组成;其特征在于:地面移动机器人和空中 飞行机器人同时从起点出发,依次访问N个子任务点执行子任务,最后共同到达目的地;为 了节省能量,地面移动机器人在设定时间段充当移动平台载着空中飞行机器人运动,当接 收到子任务时,空中飞行机器人从地面移动机器人上自主起飞去执行所述子任务,完成子 任务后空中飞行机器人再返回地面移动机器人补充能量,并陪同地面移动机器人一起运动 继续完成下一个子任务;空中机器人在前往执行某个子任务时,与其搭配的地面移动机器 人持续前进以尽可能与空中飞行机器人协调同步;全部任务完成后,所有空中飞行机器人 均返回并降落在各自搭配的地面移动机器人上;在此过程中需要计算出地面移动机器人的 路径点,以及飞行机器人从地面机器人平台上起飞,执行完所有子任务后再返回的整个航 迹点;通过引入二值变量对各个子任务点依次访问,然后分别建立地面机器人和空中机器 人的运动约束,以完成对所有子任务点访问的总时间最小为目标函数建立混合整数规划模 型;所述设定时间段设置为整个任务过程中空中飞行机器人执行子任务之外的时间段,且 以空地双方能够相互识别和定位为前提,每次空中飞行机器人执行子任务的时间须小于其 自身最大滞空时间。2. 根据权利要求1所述的基于邻域约束的空地异构机器人系统路径规划方法,其特征 在于:主要包括如下步骤: 步骤1:设置异构机器人系统的系统参数:设置整个异构机器人系统的运动起点、任务 点、目标点的位置以及每个子任务点规定的邻域范围大小;设置地面移动机器人与空中飞 行机器人各自的最大运动速度;设置空中机器人的最大滞空时间与补充能量的最小时间参 数; 步骤2:根据空地异构机器人自身约束与相互间的约束条件,建立混合整数优化模型, 具体过程如下: 步骤2-1:异构机器人系统所包含的机器人一起从起始点出发,通过引入二值变量,保 证每个子任务点必须被访问一次,且最多只能访问一次; 步骤2-2:当异构机器人系统一起运动至某一地点时,空中飞行机器人离开运载平台单 独执行任务,在满足空中飞行机器人最大滞空时间与最大运动速度的约束条件下,完成对 一个或多个子任务点邻域范围内的访问; 步骤2-3:在步骤2-2进行的过程中,地面机器人仍然以最大速度沿直线路径运动,并满 足最大运动速度约束条件; 步骤2-4:飞行机器人完成任务之后,返回降落在地面移动机器人平台上,在随地面移 动机器人前进的过程中补充能量,为下次任务的到来做准备;为了确保任务的顺利完成,避 免半途而废,空中机器人只有在充电完成后才能再次起飞,在充电过程中,需满足最短充电 时间约束;同时,在整个协同运动过程中,地面机器人仍需保证最大运动速度约束; 步骤2-5:循环步骤2-2、步骤2-3、步骤2-4,直至异构机器人系统完成对所有子任务点 的访问,最终一起到达目标点; 步骤2-6:最后,以完成对所有子任务点访问的总时间最小为代价,建立目标函数; 步骤2-7:以上述步骤2-1至步骤2-6所得的约束条件与目标函数建立混合整数非线性 规划模型; 步骤3:根据建立的混合整数优化模型进行路径规划,并利用异构机器人系统执行规划 的路径。3. 根据权利要求2所述的基于邻域约束的空地异构机器人系统路径规划方法,其特征 在于:步骤1中,设定异构机器人系统依次访问多个子任务点:I^Ts,...,T N,最后共同到达 目的地Te ;地面移动机器人以最大速度Vc,max运动,空中飞行机器人最大运动速度为Vh,max。4. 根据权利要求2所述的基于邻域约束的空地异构机器人系统路径规划方法,其特征 在于:步骤2-2中,所述子任务点1的邻域以1点为圆心,以Ri为半径形成圆形分析窗口,其 中,h为邻域中心,心为邻域半径;空中飞行机器人对某个子任务点的访问只需要落入该子 任务点的邻域范围即可。5. 根据权利要求2所述的基于邻域约束的空地异构机器人系统路径规划方法,其特征 在于:步骤2-2中,空中飞行机器人若同时访问多个子任务点,每个子任务点1可能具有不 同的邻域半径,即大小各不相同的圆域。
【文档编号】G05D1/02GK106020189SQ201610349120
【公开日】2016年10月12日
【申请日】2016年5月24日
【发明人】陈洋, 谭艳平, 吴怀宇, 程磊, 姜明浩, 龙文
【申请人】武汉科技大学
文档序号 : 【 10653592 】

技术研发人员:陈洋,谭艳平,吴怀宇,程磊,姜明浩,龙文
技术所有人:武汉科技大学

备 注:该技术已申请专利,仅供学习研究,如用于商业用途,请联系技术所有人。
声 明此信息收集于网络,如果你是此专利的发明人不想本网站收录此信息请联系我们,我们会在第一时间删除
陈洋谭艳平吴怀宇程磊姜明浩龙文武汉科技大学
汽车的驾驶辅助装置的制作方法 具有初态误差修正的轨迹学习控制器、控制系统及方法
相关内容