微生物生活小常识

闻焕日

1.关于生物学的生活小常识10条

你看看,够不?现代生物技术(生物工程): 包括基因工程、细胞工程、酶工程、发酵工程等,其中基因工程为核心技术。

1953年,沃森和克里克共同提出了dna 分子的双螺旋结构,标志着生物科学的发展进入了分子生物学阶段。达尔文(charles robert darwin,1809-1882)英国博物学家,进化论的奠基人。

世界濒危野生珍稀动物——黑颈鹤学名: grus nigricollis英文名: black-necked crane鹤科: gruidae分布: 在四川、云南、贵州越冬;在青海、西藏、甘肃等地繁殖国家一级保护动物濒危野生动物:起飞的景凫 stig frode olsen (norway).jpg神经细胞典型结构7.人体必需氨基酸日需要量氨基酸 3-6月婴儿 10-12儿童 成年人 组氨酸 28 - - 赖氨酸 103 60 12 亮氨酸 161 45 14 异亮氨酸 70 30 10 蛋氨酸+胱氨酸 58 27 13 苯丙氨酸+酪氨酸 125 27 14 苏氨酸 87 35 7 色氨酸 17 4 4 缬氨酸 93 33 10 合计 742 261 84 8.“生物导弹”疗法简介随着细胞杂交瘤技术的进展,现已能制备抗肿瘤的特异性单克隆抗体。人们以能与肿瘤细胞结合的单克隆抗体作为“导向系统”即载体,以抗癌的物质,如化疗药物、同位素或细胞溶素(lysin)作为“弹头”,制备成“生物导弹”。

9.仙台病毒 sendai virus 简介因为具有融合各种细胞的能力,所以被广泛地用来进行细胞的异核体形成和培育杂种细胞。10.贫血的种类a、营养性贫血b、溶血性贫血(部分是遗传性溶血性贫血)c、失血性贫血11. 后基因组时代各国争夺生命科学制高点(一)美国继续领跑后基因组研究: 人类基因组计划起先是由美国提出的,而且54%的工作是由美国承担的. 提供总额为1.03亿美元的资助(二)日本力争打赢后基因组之战: 预算为814.16亿日元(三)英国继续把后基因组研究作为一个重点: 预算为5430万英镑的资金(四)中国加大后基因组研究投入: 投入6亿元(五)德国政府2004年5月决定,到2007年将为人类基因组的后续研究追加拨款1.35亿欧,(六)加拿大基因组机构出资1500万加元.挪威每年最少拨款3亿挪威克朗投入功能基因组研究。

12.12种常见污染物1)二氧化硫(so2)2)悬浮颗粒物(如:粉尘、烟雾)3)氮氧化物(nox)4)一氧化碳(co)5)挥发性有机化合物(如:苯、碳氢化合物、甲醛)6)光化学氧化物(如:臭氧o3) 7)有毒微量有机污染物(如:多环芳烃、多氯联苯、二恶英)8)重金属(如:铅、镉)9)有毒化学品(如:氯气、氨气、氟化物)10)难闻气味11)放射性物质 12)温室气体(如:二氧化碳、甲烷、氯氟烃)13.世界上最致命毒药名单炭疽 引起急性、败血性传染病马尔堡病毒 马尔堡出血热的致病源马醉木 杜鹃花科,有神经性毒素死帽菇 含有几种危险物质,其中包括致人死命的毒素石头鱼 最毒也是最难看的海洋生物,也有人叫它为毒蚰内陆太攀蛇 世界十大毒蛇第一名肉毒毒素 已知微生物毒素中毒性最强的一种二恶英 已知的毒性最大的化合物中的一种蓖麻毒素 从蓖麻籽中提炼出的剧毒化学物质砷 人们常说的砒霜14. 今天,我们怎么吃才安全?“四防”原则 : 防小:无品牌、小作坊生产加工的食品,例如路边摊食品等 防散:散装食品 防低:价格过低食品 防异:异常形态食品: 五项饮食规则 第一,勿过量饮酒,因为过量饮酒可以促进肿瘤的生长; 第二,勿过多食用高脂肪饮食,过油腻的食品会促进肿瘤的生长,例如,结肠癌、乳腺癌、前列腺癌 等等; 第三,适可而止地食用腌制食品,亚硝酸盐进入胃里会形成亚硝酸胺,而亚硝酸胺是确认的致癌物; 第四,不要食用霉变食品; 第五,少吃煎炸和辛辣食品。15.维生素的种类、作用及来源维生素a生理作用:1、构成视紫红质,维持暗适应;2、维持上皮细胞的健康;3、促进生长发育 缺乏病:1、夜盲症;2、皮肤干燥,毛囊角化;3、干眼病和角膜软化 食物来源:肝、蛋黄、鱼肝油、乳汁、绿叶蔬菜、胡萝卜、玉米等维生素d 生理作用:1、增加钙、磷在小肠吸收;2、调节钙磷代谢 缺乏病:1、儿童佝偻病;2成人骨质软化症 食物来源:1、鱼肝油、肝、蛋黄、乳脂;2、紫外线照射维生素b1 生理作用:是脱羧辅酶的成分,参与糖代谢过程 缺乏病:脚气病 食物来源:谷类、哮母、豆类、干果、动物肝脏、瘦肉和蛋类维生素b2 生理作用:参与机体的生物氧化功能 缺乏病:口腔、皮肤和眼部疾病 食物来源:绿叶蔬菜、黄豆、小麦、动物内脏、奶类蛋类、哮母维生素b6 生理作用:参与蛋白质代谢 缺乏病:无典型缺乏病 食物来源:哮母、蛋黄、肝、谷类;细菌在肠道合成维生素b12 生理作用:参与“一碳单位”代谢促进红细胞的成熟 缺乏病:巨幼红细胞性贫血 食物来源:肝、瘦肉;细菌在肠道合成维生素c 生理作用:1、参与机体氧化-还原反应;2、参与羧基化反应;3、增加抵抗力;4、其它 缺乏病:坏血症 食物来源:柑橘、水果和新鲜绿叶蔬菜维生素d生理作用:1、提高肌体对钙、磷的吸收,使血浆钙和血浆磷的水平达到饱和程度 2、促进生长和骨骼钙化,促进牙齿健全 3、通过肠壁增加磷的吸收,并通过肾小管增加磷的再吸收 4、维持血液中柠檬酸盐的正常水平 5、防止氨基酸通过肾脏损失 缺乏病:人体缺乏维生素d。

2.微生物常识

微生物的定义 形体微小,结构简单,通常要用光学显微镜和电子显微镜才能看清楚的生物,统称为微生物。

(但有些微生物是可以看见的,像属于真菌的蘑菇、灵芝等。) 1 特点: 个体微小,一般<0.1mm。

构造简单,有单细胞的,简单多细胞的,非细胞的。进化地位低。

2 分类: 原核类: 三菌,三体。 真核类: 真菌,原生动物,显微藻类。

非细胞类: 病毒,亚病毒 ( 类病毒,拟病毒,朊病毒)。 3 五大共性: 体积小,面积大; 吸收多,转化快微生物; 生长旺,繁殖快; 适应强,易变异; 分布广,种类多。

[编辑本段]微生物的类群 种类 原核:细菌、放线菌、螺旋体、支原体、立克次氏体、衣原体。 真核:真菌、藻类、原生动物。

非细胞类:病毒和亚病毒。 一般地,在中国大陆地区的教科书中,均将微生物划分为以下8大类: 细菌、病毒、真菌、放线菌、立克次体、支原体、衣原体、螺旋体。

1 细菌: (1)定义:一类细胞细短,结构简单,胞壁坚韧,多以二分裂方式繁殖和水生性强的原核生物 (2)分布:温暖,潮湿和富含有机质的地方 (3)结构:主要是单细胞的原核生物,有球形,杆形,螺旋形 基本结构:细胞膜 细胞壁 细胞质 核质 特殊结构:荚膜、鞭毛、菌毛、芽胞 (4)繁殖: 主要以二分裂方式进行繁殖的 (5)菌落: 单个细菌用肉眼是看不见的,当单个或少数细菌在固体培养基啊行大量繁殖时,便会形成一个肉眼可见的,具有一定形态结构的子细胞群落. 菌落是菌种鉴定的重要依据.不同种类的细菌菌落的大小,形状光泽度颜色硬度透明度都不同. 2 放线菌 (1)定义:一类主要成菌丝状生长和以孢子繁殖的陆生性较强的原核生物 (2)分布:含水量较低,有机物较丰富的,呈微碱性的土壤中 (3)形态构造:主要由菌丝组成,包括基内菌丝和气生菌丝(部分气生菌丝可以成熟分化为孢子丝,产生孢子) (4)繁殖:通过形成无性孢子的形式进行无性繁殖 无性繁殖 有性繁殖 (5)菌落:在固体培养基上:干燥,不透明,表面呈致密的丝绒状,彩色干粉 3 病毒 (1) 定义:一类由核酸和蛋白质等少数几种成分组成的“非细胞生物”,但是它的生存必须依赖于活细胞. (2)结构:蛋白质衣壳以及核酸(核酸为DNA或RNA) (3)大小:一般直径在100nm左右,最大的病毒直径为200nm的牛痘病毒,最小的病毒直径为28nm的脊髓灰质炎病毒 (4)增殖:病毒的生命活动中一个显著的特点为寄生性。病毒只能寄生在某种特定的活细胞内才能生活。

并利用会宿主细胞内的环境及原料快速复制增值。在非寄生状态时呈结晶状,不能进行独立的代谢活动。

以 噬菌体为例: 吸附→DNA注入→复制、合成→组装→释放[编辑本段]微生物的特点 一、微生物的化学组成 C,H,O,N,P,S以及其他元素 二、微生物的营养物质 1 水和无机盐 2 碳源:凡能为微生物提供生长繁殖所需碳元素的营养物质 来源 作用 3氮源:凡能为微生物提供所必需氮元素的营养物质 来源 作用:主要用于合成蛋白质,核酸以及含氮的代谢产物 4 能源:能为微生物生命活动提供最初能源来源的营养物质或辐射能 根据碳源和能源分类: 5生长因子:微生物生长不可缺少的微量有机物 能引起人和动物致病的微生物叫病源微生物,有八大类: 1.真菌:引起皮肤病。深部组织上感染。

2放线菌:皮肤,伤口感染。 3螺旋体:皮肤病,血液感染 如梅毒,钩端螺旋体病。

4细菌:皮肤病化脓,上呼吸道感染 ,泌尿道感染,食物中毒,败血压症,急性传染病等。 5立克次氏体:斑疹伤寒等。

6衣原体:沙眼,泌尿生殖道感染。 7病毒:肝炎,乙型脑炎,麻疹,艾滋病等。

8支原体:肺炎,尿路感染。 生物界的微生物达几万种,大多数对人类有益,只有一少部份能致病。

有些微生物通常不致病,在特定环境下能引起感染称条件致病菌。 能引起食品变质,腐败,正因为它们分解自然界的物体,才能完成大自然的物质循环。

微生物的作用 微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。

世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。

在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。

大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。

每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。

微生物千姿百态,有些是腐败性的,即引起食品气味和组织结构发生不良变化。当然有些微生物是有益的,它们可用来生产如奶酪,面包,泡菜,啤酒和葡萄酒。

微生物非常小,必须通过显微镜放大约1000 倍才能看到。比如中等大小的细菌,1000个叠加在一起只有句。

3.微生物小知识

20

世纪以来,生物化学和生物物理学向微生物学渗透,再加上电子显微镜的发明和同

位素示踪原子的应用,推动了微生物学向生物化学阶段的发展。

1897

年德国学者毕希纳发

现酵母菌的无细胞提取液能与酵母一样具有发酵糖液产生乙醇的作用,

从而认识了酵母菌酒

精发酵的酶促过程,将微生物生命活动与酶化学结合起来。

诺伊贝格等人对酵母菌生理的研究和对酒精发酵中间产物的分析,

克勒伊沃对微生物代

谢的研究以及他所开拓的比较生物化学的研究方向,

其他许多人以大肠杆菌为材料所进行的

一系列基本生理和代谢途径的研究,都阐明了生物体的代谢规律和控制其代谢的基本原理,

并且在控制微生物代谢的基础上扩大利用微生物,发展酶学,推动了生物化学的发展。从

20

世纪

30

年代起,人们利用微生物进行乙醇、丙酮、丁醇、甘油、各种有机酸、氨基酸、

蛋白质、油脂等的工业化生产。

1929

年,弗莱明发现青霉菌能抑制葡萄球菌的生长,揭示了微生物间的拮抗关系,并

发现了青霉素。

1949

年,瓦克斯曼在他多年研究土壤微生物所积累资料的基础上,发现了

链霉素。

此后陆续发现的新抗生素越来越多。

这些抗生素除医用外,

也应用于防治动植物的

病害和食品保藏。

1941

年,比德尔和塔特姆用

X

射线和紫外线照射链孢霉,使其产生变异,获得营养缺

陷型。

他们对营养缺陷型的研究不仅可以进一步了解基因的作用和本质,

而且为分子遗传学

打下了基础。

1944

年,埃弗里第一次证实了引起肺炎球菌形成荚膜遗传性状转化的物质是

脱氧核糖核酸

(DNA)

1953

年,沃森和克里克提出了

DNA

分子的双螺旋结构模型和核酸半

保留复制学说。

富兰克尔

-

康拉特等通过烟草花叶病毒重组试验,证明核糖核酸

(RNA)

是遗传信息的载

体,为奠定分子生物学基础起了重要作用。其后,又相继发现转运核糖核酸

(tRNA)

的作用机

制、

基因三联密码的论说、

病毒的细微结构和感染增殖过程、

生物固氮机制等微生物学中的

重要理论,展示了微生物学广阔的应用前景。

1957

年,科恩伯格等成功地进行了

DNA

的体外组合和操纵。近年来,原核微生物基因

重组的研究不断获得进展,

胰岛素已用基因转移的大肠杆菌发酵生产,

干扰素也已开始用细

菌生产。现代微生物学的研究将继续向分子水平深入,向生产的深度和广度发展。

在微生物学的发展过程中,

按照研究内容和目的的不同,

相继建立了许多分支学科:

究微生物基本性状的有关基础理论的有微生物形态学、

微生物分类学、

微生物生理学、

微生

物遗传学和微生物生态学;

研究微生物各个类群的有细菌学、

真菌学、

藻类学、

原生动物学、

病毒学等;

研究在实践中应用微生物的有医学微生物学、

工业微生物学、

农业微生物学、

品微生物学、乳品微生物学、石油微生物学、土壤微生物学、水的微生物学饲料微生物学、

环境微生物学、免疫学等。

由于微生物学各分支学科的相互配合、

互相促进,

以及与生物化学、

生物物理学、

分子

生物学等学科的相互渗透,使其在基础理论研究和实际应用两方面都有了迅速的发展

4.微生物小知识

20

世纪以来,生物化学和生物物理学向微生物学渗透,再加上电子显微镜的发明和同

位素示踪原子的应用,推动了微生物学向生物化学阶段的发展。

1897

年德国学者毕希纳发

现酵母菌的无细胞提取液能与酵母一样具有发酵糖液产生乙醇的作用,

从而认识了酵母菌酒

精发酵的酶促过程,将微生物生命活动与酶化学结合起来。

诺伊贝格等人对酵母菌生理的研究和对酒精发酵中间产物的分析,

克勒伊沃对微生物代

谢的研究以及他所开拓的比较生物化学的研究方向,

其他许多人以大肠杆菌为材料所进行的

一系列基本生理和代谢途径的研究,都阐明了生物体的代谢规律和控制其代谢的基本原理,

并且在控制微生物代谢的基础上扩大利用微生物,发展酶学,推动了生物化学的发展。从

20

世纪

30

年代起,人们利用微生物进行乙醇、丙酮、丁醇、甘油、各种有机酸、氨基酸、

蛋白质、油脂等的工业化生产。

1929

年,弗莱明发现青霉菌能抑制葡萄球菌的生长,揭示了微生物间的拮抗关系,并

发现了青霉素。

1949

年,瓦克斯曼在他多年研究土壤微生物所积累资料的基础上,发现了

链霉素。

此后陆续发现的新抗生素越来越多。

这些抗生素除医用外,

也应用于防治动植物的

病害和食品保藏。

1941

年,比德尔和塔特姆用

X

射线和紫外线照射链孢霉,使其产生变异,获得营养缺

陷型。

他们对营养缺陷型的研究不仅可以进一步了解基因的作用和本质,

而且为分子遗传学

打下了基础。

1944

年,埃弗里第一次证实了引起肺炎球菌形成荚膜遗传性状转化的物质是

脱氧核糖核酸

(DNA)

1953

年,沃森和克里克提出了

DNA

分子的双螺旋结构模型和核酸半

保留复制学说。

富兰克尔

-

康拉特等通过烟草花叶病毒重组试验,证明核糖核酸

(RNA)

是遗传信息的载

体,为奠定分子生物学基础起了重要作用。其后,又相继发现转运核糖核酸

(tRNA)

的作用机

制、

基因三联密码的论说、

病毒的细微结构和感染增殖过程、

生物固氮机制等微生物学中的

重要理论,展示了微生物学广阔的应用前景。

1957

年,科恩伯格等成功地进行了

DNA

的体外组合和操纵。近年来,原核微生物基因

重组的研究不断获得进展,

胰岛素已用基因转移的大肠杆菌发酵生产,

干扰素也已开始用细

菌生产。现代微生物学的研究将继续向分子水平深入,向生产的深度和广度发展。

在微生物学的发展过程中,

按照研究内容和目的的不同,

相继建立了许多分支学科:

究微生物基本性状的有关基础理论的有微生物形态学、

微生物分类学、

微生物生理学、

微生

物遗传学和微生物生态学;

研究微生物各个类群的有细菌学、

真菌学、

藻类学、

原生动物学、

病毒学等;

研究在实践中应用微生物的有医学微生物学、

工业微生物学、

农业微生物学、

品微生物学、乳品微生物学、石油微生物学、土壤微生物学、水的微生物学饲料微生物学、

环境微生物学、免疫学等。

由于微生物学各分支学科的相互配合、

互相促进,

以及与生物化学、

生物物理学、

分子

生物学等学科的相互渗透,使其在基础理论研究和实际应用两方面都有了迅速的发展

5.生物小知识

第一、认识细胞生物学课程的重要性,正如原子是物理性质的最小单位,分子是化学性质的最小单位,细胞是生命的基本单位。

50年代以来诺贝尔生理与医学奖大都授予了从事细胞生物学研究的科学家,可见细胞生物学的重要性。如果你将来打算从事生物学相关的工作,学好细胞生物学能加深你对生命的理解。

第二、明确细胞生物学的研究内容,即:结构、功能、生活史。生物的结构与功能是相适应的,每一种结构都有特定的功能,每一种功能的实现都需要特定的物质基础。

如肌肉可以收缩、那么动力是谁提供的、能量从何而来的?第三、从显微、超微和分子三个层次来认识细胞的结构与功能。一方面每一个层次的结构都有特定的功能,另一方面各层次之间是有机地联系在一起的。

第四、将所学过的知识关联起来,多问自己几个为什么。细胞生物学涉及分子生物学、生物化学、遗传学、生理学等几乎所有生物系学生学过的课程,将学过的知识与细胞生物学课程中讲到的内容关联起来,比较一下有什么不同,有什么相同,为什么?尽可能对细胞和生命形成完整的印象,不要只见树木不见森林。

另一方面细胞生物学各章节之间的内容也是相互关联的,如我们在学习线粒体与叶绿体的时候,要联想起细胞物质运输章节中学过的DNP、FCCP等质子载体对线粒体会有什么影响,学习微管结构时要问问为什么β微管蛋白是一种G蛋白,而α微管蛋白不是,学习细胞分裂时要想想细胞骨架在细胞分裂中起什么作用,诸如此类的例子很多。

微生物生活小常识

内容加载中……
  • 生活家居 第六感
  • 生活家居 天下
  • 生活家居 空心
  • 生活家居 醉清风
  • 生活家居 盗梦者
  • 生活家居 尛晴天
  • 生活家居 凌夜鸟
  • 生活家居 九天雪
  • 生活家居 猫姨
  • 生活家居 苏陌染
  • 加载中...